
Exploring Computational System Health Monitoring and Reporting Solutions
 Jose Franco Baquera Ethan O’Dell Daniel Perry

jose5913@nmsu.edu eofx7@mst.edu dmp265@cornell.edu

Background
A complete software stack overhaul is taking place and different health check

tools needed to be analyzed. The following node monitoring tools were examined
before this project went underway:

When looking at Ganglia, Nagios, and Zabbix for the LANL cluster monitoring
stack, it was discovered that these solutions do not scale well. Ganglia can only be
configured for clusters of up to 2000 nodes[1] and Nagios has scalability issues that
can only be mitigated to a small extent on supercomputers similar in scale of those
at LANL. Zabbix, Nagios, and Ganglia all include their own state managers, which
do not easily fit within the LANL software stack. When LANL creates a new
cluster, it often needs custom lightweight software solutions[2]. This would be
another reason why Ganglia, Nagios, and Zabbix are not practical solutions since
these programs provide too many unneeded features and would not practically fit
within the LANL software stack. NHC[3] and nodediag[4] are both lightweight and
both tools have the benefit of already existing within LANL’s software stack. This
makes them the ideal candidates for comparison. NHC is run on LANL’s Cray
systems and nodediag is run on LANL’s Perceus systems. However, neither are run
periodically, instead they are run at boot and at job epilog.

NHC
Good:
• Includes Software-Related Tests
• Detailed Documentation and Configuration
Examples
• Provides a “Cron-Wrapper" for Better
Checks on Master Node
• Allows a Single Configuration File for All
Nodes
• Provides More Extensive Tests
• Contains Built-In Fairness Policy
Enforcement Tests
• Contains Options That Try to Fix Failed
Tests
Bad:
• Abstract and Complex File Structure
• Tests are not Contained within One
Module/File
• No Convenient Way to Obtain a List of
Checks Being Run on a Node

nodediag

Good:
• Provided Tests Can Be More Easily
Modified and Understood
• File Structure Is Simpler in Design
• Option for Listing Checks Being Run on a
Node
Bad:
• Limited Documentation and no
Configuration Examples
• Lacks Software Tests
• Different Configuration Files Required for
Each Type of Node
• Very Few Provided Tests
• Lacks Included Software Tools to Expand
Functionality
• Lacks Options That Try to Fix Failed
Tests

Good:
• Hardware-Related Tests
• Option to Automatically
Generate the Configuration
File
• Integrates Well with Slurm
and LANL’s HPC Stack

Figure 3: Pros and cons of nodediag vs. NHC.

Figure 4: Comparison of checks provided with NHC and nodediag.

Methodology
➢ NHC and nodediag were both installed on a ten compute node cluster with

Slurm as the resource manager. Each tool was configured to function as a
health check program executed by Slurm every five minutes (Fig. 1).

➢ Tests were created for both programs. These tests can be seen in Fig. 2.

Figure 6: Average computing speeds while running HPL with NHC and nodediag with provided checks.

• Ganglia • Cluster Node Diagnostics (nodediag)
• Nagios • LBNL Node Health Check (NHC)
• Zabbix

Conclusions
After a quantitative and qualitative analysis, it was discovered that both

NHC and nodediag proved to be acceptable health monitoring programs.
Both tools only put a negligible amount of load on the system out of the
box (Fig. 6) and have their own distinct drawbacks and benefits (Fig. 3 and
Fig. 4). From these results, it can be concluded that NHC:

➢ Offers a more robust set of provided health checks (i.e. “Out of the Box”),
including both software and hardware checks.

➢ Allows one universal configuration file to be used for every node on a
cluster while still allowing different classes of nodes to run different sets
of checks.

➢ Includes a significantly larger amount (i.e. about 30 more pages) of useful
documentation, along with more active support.

➢ Natively connects with slurm as a health check program capable of
changing node state depending on node health.

➢ Provides much more flexible and modular methods for assigning checks
and creating custom checks.

Therefore, it was concluded that if given a choice between NHC and
nodediag, NHC is the more practical choice for the LANL software stack.
Several issues emerged while conducting the analysis between NHC and
nodediag. For example, it was learned that:

➢ Implementing original tests as shell scripts became difficult for students
with our limited experience with bash.

➢ Some tests require root access to run, meaning that real-world
implementation of such health check programs by non-administrators
would impose a security risk.

➢ Both NHC and nodediag are, for the most part, structurally different.
Consequently, it became tedious to compare and contrast them in a
quantitative matter since it is difficult to make them homogeneous.

➢ Rigorous testing using the HPL benchmark caused hardware errors on
several compute nodes. This is assumed to be because of the condition of
the near end-of-life nodes used in the cluster.

ResultsProblem Statement
High-Performance Computing (HPC) is an integral part of the scientific

research done at Los Alamos National Laboratory (LANL). Consequently, it is
imperative to evaluate different HPC node health monitoring systems in order
to explore their viability, reliability, robustness, reusability, and job
performance impact.

Potential Future Work
➢ Designing front-end node resource fairness policies.
➢ Comparing NHC and nodediag using larger unclassified HPC clusters.
➢ Perform analysis of health check program degradation time.
➢ Create new testing metrics for monitoring node and cluster health.

Acknowledgements
We would like to acknowledge the time, feedback, and mentorship given to us

by Kierstyn Brandt, Travis Cotton, and Graham Van Heule during the duration of
this project. We would also like to thank the LANL Computer System, Cluster
and Networking Summer Institute for the training and hardware which allowed
us to complete this project.

References
[1] “Ganglia Monitoring System,” Ganglia Monitoring System RSS, 01-Jan-2001.
 [Online]. Available: http://ganglia.sourceforge.net/.
[2] A. DeConinck et al., “Design and Implementation of a Scalable Monitoring
 System on Trinity,” in Proc. Cray Users Group, 2016.
[3] Lawrence Berkeley National Laboratory Node Health Check, “mej/nhc”,
 https://github.com/mej/nhc
[4] Cluster Node Diagnostics, “chaos/nodediag”, https://github.com/chaos/nodediag

Slurm

Master Node

……......

Run NHC and
nodediag

Separately on
Five-Minute

Intervals

Node01

Figure 1: Using Slurm to run health check program every five minutes while running HPL benchmark.

Health Check
Program HPL Benchmark

Sample Size of
One Hundred

Benchmark Runs

Node02 Node10Node09

NHC nodediag

Pre-Made
Software
Checks

• Command Status • Daemons and Processes
• Filesystem Checks • File/Directory Checks
• Firmware Checks • Resource Consumption
• Unauthorized Users • Virtual Memory

None

Pre-Made
Hardware
Checks

• CPU Checks • DMI Checks
• Ethernet Checks • Infiniband Checks
• Ping/Socket Availability • RAM Checks
• SWAP Memory Checks

• Clock Source Checks • CPU Checks
• DMI Checks • Infiniband Checks
• Hard Drive Perf. • Network Config.
• PCI Card Checks • RAM Checks
• SWAP Memory Checks

➢ The High-Performance Linpack (HPL) Benchmark was run to simulate an
average high-demand job.

➢ Qualitative observations about both programs were recorded and can be seen
in Fig. 3 and Fig. 4.

➢ When testing the tools, benchmarks were run initially on unmodified
software (i.e. “Out of the Box” testing).

CPU, Clock Source, Network
Configuration, DMI, Infiniband, Node
Ping, Single Bit Memory Error Count,

RAM and SWAP Memory, Core
Temperature

Figure 2: Tests run by NHC and nodediag on the compute nodes.

NHC nodediag

LA-UR-19-27102

Figure 5: Average computing speeds while running HPL with NHC and nodediag with uniform checks.

Average HPL Performance with Uniform Check Set

